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Abstract: 

This paper investigates the energy management problem in hybrid electric vehicles (HEVs) focusing on 

the minimization of the operating cost of an HEV, including both fuel and battery replacement cost. More 

precisely, the paper presents a nested learning framework in which both the optimal actions (which 

include the gear ratio selection and the use of internal combustion engine versus the electric motor to 

drive the vehicle) and limits on the range of the state-of-charge of the battery are learned on the fly. The 

inner-loop learning process is the key to minimization of the fuel usage whereas the outerloop learning 

process is critical to minimization of the amortized battery replacement cost. Experimental results 

demonstrate a maximum of 48% operating cost reduction by the proposed HEV energy management 

policy. 

 

I. Introduction: 

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) have been gaining market share nowadays in 

the automotive market due to the concerns about large amounts of fuel consumption and pollution 

resulted from the conventional internal combustion engine (ICE) vehicles. By integrating electric motors 

(EMs) into the vehicle propulsion system, EVs and HEVs achieve higher energy efficiency and lower 

pollution emission compared with the conventional vehicles. HEVs, which represent a transition from 

conventional ICE vehicles to full electric vehicles, have higher fuel efficiency than conventional vehicles 

and fewer battery-related problems than EVs. However, due to the hybrid structure of the propulsion 

system, advanced HEV energy management techniques are needed to fully explore the advantages of 

HEVs. The hybrid propulsion system of an HEV consists of an ICE and one or more EMs. The ICE 

converts chemical energy of the fuel into mechanical energy to propel the vehicle. The EM converts 

electrical energy stored in the battery pack to propel the vehicle, and it can also operate as a generator 

collecting kinetic energy during braking to charge the battery pack, which is called the regenerative 

braking, a mechanism improving the energy efficiency of EVs and HEVs. HEV energy management 

techniques coordinate the operation of ICE and EM to improve the energy efficiency of HEVs. 

The fuel cost is one major operating cost component of the HEV. Therefore, the majority of previous 

work on HEV energy management aimed at improving the fuel economy. The rule-based strategies for 

HEV energy management interpret the driver controlled pedal motion into the required propulsion power, 

and determine the power split between the ICE and the EM based on intuition, human expertise or fuzzy 

logic. The optimization-based control strategies either minimize the fuel consumption during a trip with 

given, predicted or stochastic future driving profile, or perform control by converting battery charge into 

equivalent fuel consumption (ECMS and adaptive-ECMS approaches). 
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The state-of-health (SoH) of the HEV battery pack is degrading with the operation of an HEV due to the 

frequent charging/discharging of the battery pack by the EM. The work studied the SoH degradation 

model for the EV/HEV battery pack as a function of the state-of-charge (SoC) swing, the number of 

charging/discharging cycles, etc. The battery pack will reach its end-of-life when its SoH degrades to 

80% or 70% and the battery pack replacement will result in additional operating cost of the HEV. 

Enlarging the battery pack energy capacity within size, weight and cost constraints is preferred for 

exploring the energy storage capability of the battery pack to improve the HEV fuel economy, and 

especially the plug-in HEV (PHEV) employs a higher-capacity battery pack which is charged using the 

grid power. The battery replacement cost increases significantly with enlarged battery capacity, and 

therefore the amortized battery replacement cost must not be neglected in the HEV. There are some work 

taking into account battery SoH degradation when optimizing the fuel efficiency. However, these work 

have one or more of the following shortcomings: (i) The HEV energy management policies they use are 

based on ECMS or adaptive ECMS approaches  which rely on the knowledge of the future driving profile. 

If the prediction of the future driving profile is not accurate, the effectiveness of these ECMS and 

adapative-ECMS based approaches can be degraded. (ii) They do not use accurate analytical battery SoH 

degradation model in the optimization and evaluation, instead, they use Ah-throughput or battery output 

power as the equivalent of the battery SoH degradation during charging and discharging processes. 

Machine learning provides a powerful tool for the agent (i.e., decision-maker) to “learn” how to “act” 

optimally when the explicit and accurate system modeling is difficult or even impossible to obtain. The 

agent can observe the environment’s state and take an action according to the observed state. A reward 

will be given to the agent as a result of the action taken. Stimulated by the reward, the agent aims to 

derive a policy, which is a mapping from each possible state to an action, by “learning” from its past 

experience. The reinforcement learning has been applied to the HEV energy management problem, such 

that the HEV energy management policy does not rely on any knowledge of the future driving profile. An 

inverse reinforcement learning technique  has been applied for learning the driver behavior, however, it is 

out of our focus. In this proposed work, we investigate the HEV energy management problem focusing on 

the minimization of the operating cost of an HEV, including both fuel cost and amortized battery 

replacement cost (i.e., battery purchase plus installation cost). We present a nested learning framework in 

which both the optimal actions (which include the gear ratio selection and the use of ICE versus EM to 

drive the vehicle) and limits on the range of battery SoC are learned on the fly. More precisely, the inner-

loop learning process determines the operation modes of the HEV components whereas the outer-loop 

learning process modulates the battery SoH degradation from a global point of view. Due to the usage of 

the machine learning techniques, the proposed HEV energy management does not rely on perfect and 

accurate system modeling (i.e., HEV component modeling and driving profile modeling.) The proposed 

nested learning framework for HEV energy management differs from the reinforcement learning-based 

framework in that (i) the amortized battery replacement cost is incorporated into the HEV energy 

management; and (ii) two nested learning processes are used in which the inner-loop learning process is 

the key to minimization of the fuel usage and the outer-loop learning process is critical to minimization of 

the amortized battery replacement cost. Experimental results demonstrate a maximum of 48% operating 

cost reduction by the proposed HEV management policy. 

 

 



II. System Description:  

Although this work aims to design a smart HEV controller that discovers the energy management policy 

by learning from its experience, it is still necessary to understand the fundamentals of HEV operation. By 

way of an example and without loss of generality, we discuss the parallel HEV configuration as in most 

of the literature work on HEV energy management. There are five operation modes of a parallel HEV, 

depending on the flow of energy: (i) only the ICE propels the vehicle, (ii) only the EM propels the 

vehicle, (iii) the ICE and EM propel the vehicle in parallel, (iv) the ICE propels the vehicle and at the 

same time drives the EM to charge the battery pack, and (v) the EM charges the battery pack when the 

vehicle is braking (i.e., regenerative braking mode.) 

HEV Component Analysis : 

1) Internal Combustion Engine (ICE):  

According to the quasi-static ICE model , the fuel efficiency of an ICE is calculated as ηICE(TICE,ωICE) 

= TICE ·ωICE/(m˙ f ·Df). (1) In (1), TICE and ωICE are the torque (in N·m) and speed (in rad/s) of the 

ICE, respectively, which represent the operation point of the ICE. ˙mf is the fuel consumption rate (in g/s) 

of the ICE, depending on the ICE operation point. And Df is the fuel energy density (in J/g). Figure 1 (a) 

represents the contour map of the fuel consumption rate of an example ICE in the ICE speed-torque plane.  

2)  Electric Motor (EM):  

The EM operates either as a motor to propel the vehicle or as a generator to charge the battery pack. The 

efficiency of the EM is ηEM(TEM,ωEM) = (TEM ·ωEM)/Pbatt TEM ≥ 0 Pbatt/(TEM ·ωEM) TEM < 0  

where TEM and ωEM are respectively the torque and speed of the EM, and Pbatt is the output power of 

the battery pack. When the EM operates as a motor, TEM is positive and the battery pack is discharging 

i.e., Pbatt > 0; when the EM operates as a generator, TEM is negtive and the battery pack is charging i.e., 

Pbatt < 0. Figure 2 represents the efficiency contour map of the EM as a motor or a generator. To ensure 

safe and smooth operation of an EM, the following constraints should be satisfied: 0 ≤ ωEM ≤ ω max EM 

, (4) T min EM (ωEM) ≤ TEM ≤ T max EM (ωEM). 

3) Vehicle Tractive Force:  

The vehicle tractive force FT R to support the vehicle speed and acceleration (which are determined by 

the driver through pressing the braking or acceleration pedal) is derived by FT R = m· a+Fg +FR +FAD  

Fg = m· g ·sinθ FR = m· g · cosθ ·CR FAD = 0.5 · ρ ·CD ·AF · v 2 where m is the vehicle mass, a is the 

vehicle acceleration, Fg is the force due to road slope, FR is the rolling friction force, FAD is the air drag 

force, θ is the road slope angle, CR is the rolling friction coefficient, ρ is the air density, CD is the air drag 

coefficient, AF is the vehicle frontal area, and v is the vehicle speed. Given v, a and θ, the tractive force 

FT R can be derived using. Then, the vehicle wheel torque Twh and wheel speed ωwh are related to FT 

R, v, and wheel radius rwh by Twh = FT R ·rwh, ωwh = v/rwh. The demanded power for propelling the 

vehicle i.e., pdem satisfies pdem = FT R · v = Twh ·ωwh. 

 

 



III.  A Nested Learning FrameWork For HEV Energy Management: 

In this work, we aim to minimize the operating cost of an HEV including both fuel cost and amortized 

battery replacement cost. To achieve this goal, we propose a nested learning framework for HEV energy 

management, in which the optimal actions to propel the vehicle and the limits on the change in the SoC of 

the battery are learned on the fly by the inner-loop reinforcement learning and the outer-loop adaptive 

learning, respectively. The inner-loop reinforcement learning process is the key to minimization of the 

fuel usage, whereas the outer-loop adaptive learning process is critical to minimization of the amortized 

battery replacement cost. 

A. Motivation : 

We use reinforcement learning in the inner loop due to the following reasons. (i) The inner-loop HEV 

energy management aims to minimize the total fuel consumption during a driving trip rather than the 

instantaneous fuel consumption rate at each time step; the reinforcement learning also aims to optimize an 

expected cumulative return  rather than an immediate reward. (ii) During a driving trip, the changes of 

vehicle speed, power demand and battery charge level require different HEV operation modes; the 

reinforcement learning agent takes different actions depending on the current state. (iii) The inner-loop 

HEV energy management does not have a priori knowledge of a whole driving trip, while it has only the 

knowledge of the current vehicle speed and power demand values and the current fuel consumption rate 

as a result of an action taken previously; the reinforcement learning agent only needs the knowledge of 

the current state and the current reward in order to learn the optimal policy, while it needs not have 

knowledge of the system input in prior or the detailed system modeling. The inner loop is the key to 

minimization of the fuel usage, however, we also consider battery SoH degradation in the inner loop by 

incorporating the battery capacity fading term into the reward of the reinforcement learning, such that the 

inner loop itself can be used as an independent HEV energy management framework for minimizing the 

total operating cost 

In the previous work on HEV energy management, a fixed battery SoC range is used i.e., the battery pack 

SoC is clamped by fixed lower bound and upper bound. Then, the resultant HEV energy management 

strategies may tend to use up the available battery energy to improve fuel economy even for some very 

short urban trips, which may harm battery SoH seriously. The battery can obtain significant amount of 

energy by regenerative braking in urban trips. It is not always necessary to use up the available battery 

energy. 

B. Inner-Loop Reinforcement Learning Process: 

 

1) Reinforcement: 

 

 Learning Background: In reinforcement learning, the decision-maker is called the agent and everything 

outside the agent is called the environment. At each of a sequence of discrete time steps t = 0,1,2,... At 

each time step t, the agent observes the environment’s state st ∈ S and on that basis takes an action at ∈ A, 

where S and A are the sets of possible states and actions, respectively. One time step later, in part as a 

consequence of the action taken, the agent receives a numerical reward rt+1 and finds the environment in 

a new state st+1  



A policy π of the agent is a mapping from each state s ∈ S to an action a ∈ A that specifies the action a = 

π(s) that the agent will choose when the environment is in state s. The ultimate goal of an agent is to find 

the optimal policy, such that V π (s) = E (X∞ k=0 γ k ·rt+k+1 | st = s ) is maximized for each state s ∈ S. 

The value function Vπ (s) is the expected return when the environment starts in state s at time step t and 

follows policy π thereafter. γ is a parameter, 0 < γ < 1, called the discount rate that ensures the infinite 

sum (i.e., P∞ k=0 γ k ·rt+k+1) converges to a finite value. More importantly, γ reflects the uncertainty in 

the future. rt+k+1 is the reward received at time step t +k +1. 

2)  State Space:  

We define the state space of the inner-loop reinforcement learning where pdem is the power demand for 

propelling the HEV, v is the vehicle speed, and q is the charge stored in the battery pack. Different actions 

should be taken under different states. For example, if the power demand is negative i.e., the vehicle is 

braking, the action taken by the agent (i.e., HEV controller) should be charging the battery by using the 

EM as a generator. On the other hand, if the power demand is a very large positive value, the action 

should be discharging battery to power the EM, which propels the vehicle in assistance with ICE.  

S =  s = [pdem, v,q] T |pdem ∈ Pdem, v ∈ V ,q ∈ Q , 

A reinforcement learning agent should be able to observe a state. In the actual implementation of the 

inner-loop reinforcement learning, the current power demand level pdem and vehicle speed level v can be 

obtained by using sensors to measure the driver controlled pedal motion. However, the charge level q 

cannot be obtained from online measurement of terminal voltage, since the battery pack terminal voltage 

changes with the charging/discharging current and therefore it cannot be an accurate indicator of q. To 

observe the charge level q, the Coulomb counting method is needed by the agent, which is typically 

realized using a dedicated circuit. 

Pdem, V , and Q in are respectively the finite sets of power demand levels, vehicle speed levels, and 

levels of charge stored in the battery pack. Discretization is required when defining these finite sets. In 

particular, Q is defined by discretizing the range of charge stored in the battery pack i.e., [qmin,qmax] 

into a finite number of charge levels: Q = {q1,q2,...,qN}, 

where qmin = q1 < q2 < ... < qN = qmax. Generally, qmin and qmax are 40% and 80% of the battery pack 

nominal capacity, respectively, in the charge-sustaining energy management for ordinary HEVs ; 0% and 

80%, respectively, in the chargedepleting energy management for PHEVs. In the outerloop adaptive 

learning process, we will optimize qmin value to modulate the battery SoH degradation and qmax is 

usually fixed in the HEV control. 3) Action Space: We define the action space of the innerloop 

reinforcement learning as a finite number of actions, each represented by the discharging current of the 

battery pack and the gear ratio value:  

A =  a = [i,R(k)]T |i ∈ I,R(k) ∈ R 

where an action a = [i,R(k)]T taken by the agent is to discharge the battery pack with current i and choose 

the k-th gear ratio. The set I contains within it a finite number of current values in the range of 

[−Imax,Imax]. Please note that i > 0 denotes discharging the battery pack; and i < 0 denotes charging the 

battery pack. The set R contains the allowable gear ratio values, which depend on the drivetrain design. 

Usually, there are four or five gear ratio values in total . 



Alternatively, we can define a reduced action space Are, in which an action are = [i] is to discharge the 

battery pack with current i (and the gear ratio R(k) is selected by solving an optimization problem such 

that the resultant fuel consumption rate is minimized.) The complexity and convergence speed of 

reinforcement learning algorithms are proportional to the number of state-action pairs . Therefore, the 

reduced action space Are helps to reduce the complexity and increase convergence speed by a factor of 

four or five. However, this reduced action space relies on HEV component modeling when solving the 

optimization problem. In summary, we can either use the original action space for model-free control or 

use the reduced action space Are for reduced complexity and increased convergence rate. 

3) Reward:  

The objective of the inner-loop reinforcement learning is to minimize the HEV operating cost including 

both fuel cost and amortized battery replacement cost. Therefore, we define the reward r that the agent 

receives after taking action a in state s as the negative of the weighted sum of the fuel consumption and 

battery capacity fading in that time step i.e., −m˙ f · ∆T − w · ∆Cf ade, where ∆T is the length of a time 

step, w is the weight of battery capacity fading (w is determined by the ratio of the fuel cost to the 

amortized battery cost), and ˙mf and ∆Cf ade are respectively the fuel consumption rate and battery 

capacity fading in that time step. The reinforcement learning agent aims to maximize the expected return 

, which is a discounted sum of rewards. Therefore, by using the negative of the weighed sum of the fuel 

consumption and battery capacity fading in a time step as the reward, the fuel consumption and battery 

capacity fading will be minimized while maximizing the expected return  

4) TD(λ)-Learning Algorithm:  

We adopt the TD(λ)- learning algorithm  for deriving the optimal policy of the inner-loop reinforcement 

learning, due to its relatively higher convergence rate and higher performance in non-Markovian 

environment. In this algorithm, a Q value, denoted by Q(s,a), is associated with each state-action pair 

(s,a), where a state s is represented by the power demand pdem, the vehicle speed v, and the battery 

charge level q, and an action a is to discharge the battery with current i and choose the k-th gear ratio. 

The Q(s,a) value approximates the expected discounted cumulative reward of taking action a in state s. 

The TD(λ)- learning algorithm is summarized as follows. 

In the TD(λ)-learning algorithm, the Q values are initialized arbitrarily at first. At each time step t, the 

agent first selects an action at for the current state st based on the Q(s,a) values. To avoid the risk of 

getting stuck in a sub-optimal solution, the exploration-exploitation policy is employed for the action 

selection, i.e., the agent does not always select the action a that results in the maximum Q(st ,a) value for 

the current state st . After taking the selected action at , the agent observes a new state st+1 and receives 

reward rt+1. Then, based on the observed st+1 and rt+1, the agent updates the Q(s,a) values for all the 

state-action pairs, in which the eligibility e(s,a) of each state-action pair is updated and utilized during the 

Q value update. The eligibility e(s,a) of a state-action pair reflects the degree to which the particular state-

action pair has been encountered in the recent past and λ is a constant between 0 and 1. Due to the use of 

the eligibility of the state-action pairs, we do not need to update Q values and eligibility e of all state-

action pairs. We only keep a list of M most recent stateaction pairs since the eligibility of all other state-

action pairs is at most λ M, which is negligible when M is large enough. 

 



5) Application Specific Improvement of the TD(λ): 

Learning Algorithm: We modify the TD(λ)-learning algorithm to improve its performance and 

convergence rate in the HEV control scenario by accommodating different operation modes of an HEV. 

Specifically, when selecting an action for the current state, the agent takes into account the actual HEV 

operation mode besides the stored Q values. For example, if the power demand is negative i.e., the 

regenerative braking mode, the agent will definitely choose the maximum allowable charging current for 

the battery pack to harvest the kinetic energy as much as possible. If the battery charge level is very high, 

the agent will use EM power with higher likelihood to propel the vehicle. And if the battery charge level 

is very low, the agent is likely to use more ICE power to propel the vehicle and at the same time charge 

the battery. In summary, these application specific modifications significantly improve performance and 

convergence rate of TD(λ)-learning algorithm. 

6) Complexity and Model-Free Analysis:  

The time complexity of the TD(λ)-learning algorithm at a time step is O(|A| + M), where |A| is the total 

number of actions and M is the number of the most recent state-action pairs kept in memory. Usually, |A| 

+ M is within a few hundred, and therefore, the algorithm has negligible computation overhead. In terms 

of convergence rate, normally, the TD(λ)-learning algorithm can converge within L time steps, where L 

is approximately three to five times of the number of state-action pairs. In simulation, due to the 

application specific improvement, the TD(λ)-learning algorithm can converge within one hour driving, 

which is much shorter than the total lifespan of an HEV. To further speed up the convergence rate, the Q 

values can be initialized by the manufacturers with optimized values. 

III. Experimental Results:  

We simulate the operation of a PHEV, the model of which is developed in the vehicle simulator 

ADVISOR [1]. The key parameters of the PHEV are summarized in Table I. We test our proposed policy 

and compare with the reinforcement learning (RL) policy  and the rule-based policy . We use both real-

world and testing driving trip profiles, which are developed and provided by different organizations and 

projects such as U.S. EPA (Environmental Protection Agency) and E.U. MODEM (Modeling of 

Emissions and Fuel Consumption in Urban Areas project). 

TABLE I. PHEV KEY PARAMETERS                              

Vehicle   Transmission   ICE 

 

m = 1254 kg  
CR = 0.009 

 CD = 0.335  

 AF = 2 m2;  
 rwh = 0.282 m 

ρreg = 1.75  
ηreg = 0.98 

ηgb = 0.98 

R(k) = [13.5; 7.6 
5.0; 3.8; 2.8]  

Peak power 41Kw 
peak eff. 34% 

EM 

peak power 56kW 
peak eff. 92% 

 Battery 

Capacity 25A·h Voltage 240V 

 

 

 

Table II presents the simulation results of the operating cost of the PHEV during different driving trips 

when the proposed, the RL, and the rule-based policies are adopted. For example, as shown in Table II, 



the proposed policy results in 0.0028% battery capacity fading and 344.17g fuel consumption in the 

MODEM5713 driving trip, which correspond to $0.76 amortized battery replacement cost and $0.37 fuel 

consumption cost, and the total operating cost is $1.13. When calculating the operating cost, we use the 

America average gasoline price of $3/gal and the total battery replacement cost of $8,000 for the PHEV. 

Generally, the battery replacement cost of a PHEV is in the range $10,000∼$12,000 [3] for battery pack 

with average capacity of 10kWh. We use the battery replacement cost of $8,000 for the 6kWh battery. We 

use the complete cycle-decoupling method [30] to evaluate the battery capacity fading during each trip. 

From Table II we can observe that the proposed policy consistently achieves the lowest operating cost 

comparing with the RL and rule-based policies. The proposed policy achieves a maximum of 47% 

operating cost reduction comparing with the rule-based policy, and a maximum of 48% reduction 

comparing with the RL policy. 

TABLE II. OPERATING COST OF THE PHEV IN DIFFERENT TRIPS USING THE 

PROPOSED, RL, AND RULE-BASED POLICIES. 

Trip Trip Proposed RL Rule 

 

MODEM  
5713 

cost 

0.0028%($0.76) 
+344.17g($0.37) 

=($1.13) 

0.0045%($1.22) 
+310.56g($0.33 

=($1.55) 

0.0044%($1.18) 
+383.30g($0.41) 

=($1.59) 

Hyzem 

 Motorway 
cost 

0.0018%($0.50) 

+1991.9g($2.16) 0 
=($2.66) 

0.0048%($1.28) 

+2001.9g($2.17) 
=($3.45) 

.0050%($1.36) 

+2093.6g($2.27) 
=($3.63) 

FTP75 

 

cost 

0.0027%($0.73) 

+311.40g($0.33) 

=($1.06) 

0.0043%($1.16) 

+295.97g($0.32 

=($1.48) 

0.0048%($1.30) 

+623.73g($0.67) 

 =($1.97 

US06 

cost  

0.0028%($0.74) 

+414.17g($0.45) 

=($1.19) 

0.0043%($1.17) 

+354.34g($0.38) 

=($1.55) 

0.0036%($0.98) 

+321.02g($0.34) 

=($1.32) 

UDDS 
cost  

0.0032%($0.85) 
+298.48g($0.32) 

=($1.17) 

0.0044%($1.19) 
+355.85g($0.38)  

=($1.57) 

0.0048%($1.30) 
+630.22g($0.68) 

=($1.98) 

OSCAR 
cost  

0.0021%($0.57) 
+149.51g($0.16)  

=($0.73) 

0.0043%($1.16) 
+222.75g($0.24) 

=($1.40) 

0.0042%($1.12) 
+242.54g($0.26) 

=($1.38) 

 

Based on Table II, we also have the following observations: (i) For a PHEV, the amortized battery 

replacement cost is a large portion of the total operating cost and is even higher than the fuel cost for 

some driving trips. (ii) The relative amortized battery replacement cost is more significant for shorter 

driving trip. (iii) Our proposed policy can prolong the battery life significantly besides reducing the 

operating cost. (iv) Although the RL policy can reduce the fuel consumption comparing with the rule-

based policy, in some case the operating cost from the RL policy is even higher because the RL policy 

does not take into account the battery cost when optimizing the fuel consumption. (v) The amortized 

battery replacement cost is non-negligible when optimizing the total operating cost. 

 



V. Conclusions: 

 This paper investigates the HEV energy management problem for the minimization of the operating cost 

of an HEV by using a nested learning framework. The inner loop determines the operation modes of the 

HEV components and is the key to minimization of the fuel usage, whereas the outer loop modulates the 

battery SoH degradation globally. Experimental results demonstrate a maximum of 48% operating cost 

reduction by the proposed HEV energy management policy. 
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